viernes, 12 de abril de 2019

PERMUTACIONES


  1. Son de n elementos a los diferentes grupos que se pueden formar con esos elementos siguiendo las siguientes reglas:
  • Entran todos los elementos
  • Si importa el orden 
  • No se repiten los elementos
Si el ejercicio que se plantea sigue esas tres reglas, la formula a aplicar es:
Pn=n!
Donde "n" es el numero de elementos que vana participar en las agrupaciones.

Ejercicios
1: ¿Cuantos numeros de 3 cifras diferentes se pueden formar con los digitos 1,2 y 3?

Pn=3!                     P3=3!                                       123
                              P3=3*2*1=6                             132
                                                                                213
                                                                                231
                                                                                312
                                                                                321

2:¿Cuantos grupos diferentes de 3 vocales se pueden formar sin que se repitan los elementos usando las siguientes vocales?

P3=3!                  P3=3*2*1                                  A,E,O
                                         P3=6                                                               A,O,E
                                                                              E,A,O
                                                                              E,O,A
                                                                              O,A,E
                                                                              O,E,A

3:¿Cuantos grupos de 4 elementos se pueden formar con los digitos si no se repiten los elementos?

P4=4!                                3579             3597
P4=4*3*2*1                     3759             3795             3
P4=24                               3957             3975
                                         5379             5397
                                         5739             5793              5
                                         5937             5973
                                         7359             7395
                                         7539             7593              7
                                         7935             7953
                                         9357             9375
                                         9537             9573              9
                                         9735             9753
 4:Antiguamente los barcos se comunicaban entre si utilizando banderas de diferentes colores colocandolas de manera ordenada en diferenes posiciones. ¿Cuantos mensajes distintos se podran enviar con las banderas en los colores azul, rojo, verde y negro? Indique cuantos mensajes serian si se le añade otra bandera cafe.

-En este caso no deberan mostrarselas agrupaciones-

P4=4!                                                P5=5!
P4=4*3*2*1                                     P5=5*4*3*2*1
P4=24 mensajes                               P5=120 mensajes


relacion entre teoria de conjuntos logica matematica y algebra booleana

 Entre logica matematica y teoria de conjuntos comparten leyes logicas tanto para conjuntos como para logica proposicional. El álgebra de Boole fue un intento de utilizar las técnicas algebraicas para tratar expresiones de la lógica proposicional.En la actualidad, el álgebra de Boole se aplica de forma generalizada en el ámbito del diseño electrónico.

Teoria de subconjuntos

    1:Conjunto de elementos que tienen las mismas características y que está incluido dentro de otro conjunto más 
    2:Un conjunto A es subconjunto de otro B si todos los elementos del primer conjunto son también elementos del segundo conjunto. Esto es;
AB  xA,xB 
Ejemplos.
El «conjunto de todos los hombres» es un subconjunto del «conjunto de todas las personas».
{1, 3}  {1, 2, 3, 4}
{2, 4, 6, ...}  {1, 2, 3, ..} = N ( {Números pares {Números naturales} )

3:

Diagrama de venn

1: Los diagramas de Venn son esquemas usados en la teoría de conjuntos, tema de interés en matemáticas, lógica de clases y razonamiento diagramático. Estos diagramas muestran colecciones (conjuntos) de cosas (elementos) por medio de líneas cerradas. La línea cerrada exterior abarca a todos los elementos bajo consideración, el conjunto universal U.
Los diagramas de Venn fueron ideados hacia 1880 por John Venn.
2:Un diagrama de Venn usa círculos que se superponen u otras figuras para ilustrar las relaciones lógicas entre dos o más conjuntos de elementos. A menudo, se utilizan para organizar cosas de forma gráfica, destacando en qué se parecen y difieren los elementos.


martes, 2 de abril de 2019

Teoria de conjuntos

CONJUNTOS
1: Es una colección de elementos con características similares considerada en sí misma como un objeto. Los elementos de unconjunto, pueden ser las siguientes: personas, números, colores, letras, figuras, etc.
2: Es un enunciando una propiedad que permita seleccionar de un conjunto ya formado, aquellos que verifiquen dicha propiedad. Por ejemplo, dentro del conjunto de los números podemos seleccionar el conjunto B de los números pares, en este caso se emplea una letra, por lo general x, para representar un elemento cualquiera y se escribe:

B = { x / x es par}
lo que se lee: "B es el conjunto de los números x tales que x es par". Esta forma de definir un conjunto de llama por comprensión.
3: Es lo que está unido, contiguo o incorporado a otra cosa, o que se encuentra mezclado, combinado o aliado con otra cosa diversa. Un conjunto, por lo tanto, es un agregado de varias cosas o personas.