viernes, 15 de marzo de 2019

Tiorres de hanoi


TORRES DE HANOI
¿QUE ES?
Las Torres de Hanói es un rompecabezas o juego matemático inventado en 1883 por el matemático francés Édouard Lucas.1​ Este juego de mesa individual consiste en un número de discos perforados de radio creciente que se apilan insertándose en uno de los tres postes fijados a un tablero. El objetivo del juego es trasladar la pila a otro de los postes siguiendo ciertas reglas. El problema es muy conocido en la ciencia de la computación y aparece en muchos libros de texto como introducción a la teoría de algoritmos.
¿COMO SE RESUELVE?
La fórmula para encontrar el número de movimientos necesarios para transferir n discos desde un poste a otro es: 2n - 1
El juego, en su forma más tradicional, consiste en tres postes verticales. En uno de los postes se apila un número indeterminado de discos perforados por su centro (elaborados de madera), que determinará la complejidad de la solución. Por regla general se consideran siete discos. Los discos se apilan sobre uno de los postes en tamaño decreciente de abajo a arriba. No hay dos discos iguales, y todos ellos están apilados de mayor a menor radio -desde la base del poste hacia arriba- en uno de los postes, quedando los otros dos postes vacíos. El juego consiste en pasar todos los discos desde el poste ocupado (es decir, el que posee la torre) a uno de los otros postes vacíos. Para realizar este objetivo, es necesario seguir tres simples reglas:
1.           Solo se puede mover un disco cada vez y para mover otro los demás tienen que estar en postes.
2.           Un disco de mayor tamaño no puede estar sobre uno más pequeño que él mismo.
3.           Solo se puede desplazar el disco que se encuentre arriba en cada poste.
Existen diversas formas de llegar a la solución final, todas ellas siguiendo estrategias diversas.
Resultado de imagen para ¿la TORRES DE HANOI

sucecion de fibonacci


La sucesión de Fibonacci, en ocasiones también conocida como secuencia de Fibonacci o incorrectamente como serie de Fibonacci, es en sí una sucesión matemática infinita. Consta de una serie de números naturales que se suman de a 2, a partir de 0 y 1. Básicamente, la sucesión de Fibonacci se realiza sumando siempre los últimos 2 números (Todos los números presentes en la sucesión se llaman números de Fibonacci).
¿Como es?
La sucesión de Fibonacci es la sucesión de números:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
Cada número se calcula sumando los dos anteriores a él.
  • El 2 se calcula sumando (1+1)
  • Análogamente, el 3 es sólo (1+2),
  • Y el 5 es (2+3),
  • ¡y sigue!
Ejemplo: el siguiente número en la sucesión de arriba sería (21+34) = 55
¡Así de simple!
Aquí tienes una lista más larga:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, ...
EJEMPLO:
Resultado de imagen para como es la serie fibonacci

Triangulo Pascal


triangulo de pascal
¿Que es?
El triángulo de Pascal es un triángulo de números enteros, infinito y simétrico Se empieza con un 1 en la primera fila, y en las filas siguientes se van colocando números de forma que cada uno de ellos sea la suma de los dos números que tiene encima. Se supone que los lugares fuera del triángulo contienen ceros, de forma que los bordes del triángulo están formados por unos. Aquí sólo se ve una parte; el triángulo continúa por debajo y es infinito.
'¿como se hace?
Cada linea se construye a partir de la anterior.
Con excepción de los números 1, que siempre están en los extremos, cada número es igual a la suma de los dos números que tiene por encima.
triangulo de Pascal
aplicaciones para un triangulo de pascal
Coeficientes binomiales
Los números en la línea n del Triángulo de Pascal enlistan los coeficientes de la expansión de (a + b)^n.
Combinaciones
Las combinaciones son una operación básica en Combinatoria, la rama de la matemática que involucra contar grupos de elementos discretos. Por ejemplo, el número de manos posibles de cinco cartas de una baraja de 52 es 52C5
Probabilidad
En una serie de n resultados binomiales, como tener n niños, el número de resultados en el que uno de los eventos de los binomios ocurra k veces, es igual a la entrada k-ésima entrada en la línea n del triángulo de Pascal.
Series de números
En una serie de n resultados binomiales, como tener n niños, el número de resultados en el que uno de los eventos de los binomios ocurra k veces, es igual a la entrada k-ésima entrada en la línea n del triángulo de Pascal.